You’ve all heard this classic statistics problem, based on an old game show:

A contestant is shown 3 doors. Only one of those three doors hides something of value to the contestant (perhaps a new car), while the other two contain nothing. The contestant chooses one door, but that door remains closed. The host then opens up a 2nd door, and this door is *always* a losing door. At this point, the contestant may choose to now open the originally-chosen door, or switch to and open the last remaining door.

So why is this interesting? It turns out that the way to maximize your chances of winning is to *always switch*, and this maximized chance is 67%. It also turns out that this is totally non-intuitive, and that most people think that, if the contestant always switches, the chances of winning are at best 50%. If you haven’t heard the solution to this problem before, you should think through it and see what you expect the chances of winning are under the two conditions: After the contestant chooses a door, and is subsequently shown that one of the other two is a losing door, [1] the contestant *always* switches to the remaining door, or [2] the contestant *never* switches. After the jump, I’ll explain this intuitively and then show a Python script to simulate this problem.